Specify neural network in command line¶
To use a custom neural network in command line with DomainLab, the user has to implement the following signature in a python file and specify the file path via --npath
def build_feat_extract_net(dim_y, remove_last_layer=False):
The user could choose to ignore argument remove_last_layer
since this argument is only used in fair benchmark comparison.
See examples below from --npath=examples/nets/resnet.py
where the examples can be found in the examples folder of the code repository.
https://github.com/marrlab/DomainLab/blob/master/examples/nets/resnet.py
Example use case¶
model ‘erm’ with custom neural network¶
python main_out.py --te_d=caltech --task=mini_vlcs --debug --bs=2 --model=erm --npath=examples/nets/resnet.py
trainer ‘matchdg’ with custom neural network¶
python main_out.py --te_d=caltech --task=mini_vlcs --debug --bs=2 --model=erm --trainer=matchdg --epochs_ctr=3 --epos=6 --npath=examples/nets/resnet.py
model erm with custom neural network¶
python main_out.py --te_d=caltech --task=mini_vlcs --debug --bs=8 --model=erm --npath=examples/nets/resnet.py
Larger images:¶
model erm with implemented neural network¶
python main_out.py --te_d=caltech --task=mini_vlcs --debug --bs=8 --model=erm --nname=alexnet
model dann with implemented neural network¶
python main_out.py --te_d=caltech --task=mini_vlcs --debug --bs=8 --model=dann --nname=alexnet
Custom algorithm defined in external python file¶
python main_out.py --te_d=caltech --task=mini_vlcs --debug --bs=3 --apath=examples/models/demo_custom_model.py --model=custom --nname_argna2val my_custom_arg_name --nname_argna2val alexnet
python main_out.py --te_d=caltech --task=mini_vlcs --debug --bs=3 --apath=examples/models/demo_custom_model.py --model=custom --npath_argna2val my_custom_arg_name --npath_argna2val examples/nets/resnet.py