Source code for domainlab.tasks.task_mini_vlcs

"""
test task for image size 224
"""
import os

from torchvision import transforms

from domainlab.tasks.task_folder_mk import mk_task_folder
from domainlab.tasks.utils_task import ImSize

path_this_file = os.path.dirname(os.path.realpath(__file__))


[docs] def addtask2chain(chain): """ given a chain of responsibility for task selection, add another task into the chain """ new_chain = mk_task_folder( extensions={"caltech": "jpg", "sun": "jpg", "labelme": "jpg"}, list_str_y=["chair", "car"], dict_domain_folder_name2class={ "caltech": {"auto": "car", "stuhl": "chair"}, "sun": {"vehicle": "car", "sofa": "chair"}, "labelme": {"drive": "car", "sit": "chair"}, }, dict_domain_img_trans={ "caltech": transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor()] ), "sun": transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor()] ), "labelme": transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor()] ), }, img_trans_te=transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor()] ), isize=ImSize(3, 224, 224), dict_domain2imgroot={ "caltech": os.path.join( path_this_file, os.path.normpath("../"), os.path.normpath("zdata/vlcs_mini/caltech/"), ), "sun": os.path.join( path_this_file, os.path.normpath("../"), os.path.normpath("zdata/vlcs_mini/sun/"), ), "labelme": os.path.join( path_this_file, os.path.normpath("../"), os.path.normpath("zdata/vlcs_mini/labelme/"), ), }, taskna="mini_vlcs", succ=chain, ) return new_chain