domainlab.algos package¶
Subpackages¶
- domainlab.algos.msels package
- domainlab.algos.observers package
- domainlab.algos.trainers package
- Subpackages
- Submodules
- domainlab.algos.trainers.a_trainer module
AbstractTrainer
AbstractTrainer.after_batch()
AbstractTrainer.before_batch()
AbstractTrainer.before_tr()
AbstractTrainer.cal_reg_loss()
AbstractTrainer.cal_reg_loss_over_task_loss_ratio()
AbstractTrainer.decoratee
AbstractTrainer.dset_decoration_args_algo()
AbstractTrainer.extend()
AbstractTrainer.get_model()
AbstractTrainer.init_business()
AbstractTrainer.is_myjob()
AbstractTrainer.list_tr_domain_size
AbstractTrainer.model
AbstractTrainer.name
AbstractTrainer.p_na_prefix
AbstractTrainer.post_tr()
AbstractTrainer.print_parameters()
AbstractTrainer.reset()
AbstractTrainer.str_metric4msel
AbstractTrainer.tr_epoch()
mk_opt()
- domainlab.algos.trainers.args_dial module
- domainlab.algos.trainers.args_miro module
- domainlab.algos.trainers.hyper_scheduler module
- domainlab.algos.trainers.mmd_base module
- domainlab.algos.trainers.train_basic module
- domainlab.algos.trainers.train_causIRL module
- domainlab.algos.trainers.train_coral module
- domainlab.algos.trainers.train_dial module
- domainlab.algos.trainers.train_ema module
- domainlab.algos.trainers.train_fishr module
- domainlab.algos.trainers.train_hyper_scheduler module
- domainlab.algos.trainers.train_irm module
- domainlab.algos.trainers.train_matchdg module
- domainlab.algos.trainers.train_miro module
- domainlab.algos.trainers.train_miro_model_wraper module
TrainerMiroModelWraper
TrainerMiroModelWraper.accept()
TrainerMiroModelWraper.cal_feat_layers_ref_model()
TrainerMiroModelWraper.clear_features()
TrainerMiroModelWraper.extract_intermediate_features()
TrainerMiroModelWraper.get_shapes()
TrainerMiroModelWraper.hook()
TrainerMiroModelWraper.hook_ref()
TrainerMiroModelWraper.register_feature_storage_hook()
- domainlab.algos.trainers.train_miro_utils module
- domainlab.algos.trainers.train_mldg module
- domainlab.algos.trainers.zoo_trainer module
- Module contents
Submodules¶
domainlab.algos.a_algo_builder module¶
parent class for combing model, trainer, task, observer
- class domainlab.algos.a_algo_builder.NodeAlgoBuilder(success_node=None)[source]¶
Bases:
AbstractChainNodeHandler
Base class for Algorithm Builder
- extend(node)[source]¶
Extends the current algorithm builder with a new node.
This method updates the builder by setting the next_model attribute to the specified node.
- Parameters:
node – The node to be added to the algorithm builder.
- na_prefix = 'NodeAlgoBuilder'¶
- property name¶
get the name of the algorithm
domainlab.algos.builder_api_model module¶
build algorithm from API coded model with custom backbone
- class domainlab.algos.builder_api_model.NodeAlgoBuilderAPIModel(success_node=None)[source]¶
Bases:
NodeAlgoBuilder
build algorithm from API coded model with custom backbone
domainlab.algos.builder_custom module¶
domainlab.algos.builder_dann module¶
builder for Domain Adversarial Neural Network: accept different training scheme
- class domainlab.algos.builder_dann.NodeAlgoBuilderDANN(success_node=None)[source]¶
Bases:
NodeAlgoBuilder
domainlab.algos.builder_diva module¶
Builder pattern to build different component for experiment with DIVA
- class domainlab.algos.builder_diva.NodeAlgoBuilderDIVA(success_node=None)[source]¶
Bases:
NodeAlgoBuilder
Builder pattern to build different component for experiment with DIVA
domainlab.algos.builder_erm module¶
builder for erm
- class domainlab.algos.builder_erm.NodeAlgoBuilderERM(success_node=None)[source]¶
Bases:
NodeAlgoBuilder
builder for erm
domainlab.algos.builder_hduva module¶
build hduva model, get trainer from cmd arguments
- class domainlab.algos.builder_hduva.NodeAlgoBuilderHDUVA(success_node=None)[source]¶
Bases:
NodeAlgoBuilder
domainlab.algos.builder_jigen1 module¶
builder for JiGen
- class domainlab.algos.builder_jigen1.NodeAlgoBuilderJiGen(success_node=None)[source]¶
Bases:
NodeAlgoBuilder
domainlab.algos.utils module¶
network builder utils
domainlab.algos.zoo_algos module¶
chain of responsibility pattern for algorithm selection