domainlab.exp_protocol package¶
Submodules¶
domainlab.exp_protocol.aggregate_results module¶
Functions to join the csv result files generate by different jobs of the benchmarks into a single csv file.
- domainlab.exp_protocol.aggregate_results.agg_from_directory(input_dir: str, output_file: str)[source]¶
- Aggregates all results from a directory. Used to aggregate partial results. 
- domainlab.exp_protocol.aggregate_results.agg_main(bm_dir: str, skip_plotting: bool = False)[source]¶
- Aggregates partial results and generate plots. 
- domainlab.exp_protocol.aggregate_results.agg_results(input_files: List[str], output_file: str)[source]¶
- Aggregrates the results of the snakemake benchmark. - Combines csv files with identical columns into a single csv file. - Parameters:
- input_files – List of csv files with identical header. 
- output_file – Output csv file. 
 
 
domainlab.exp_protocol.run_experiment module¶
Runs one task for a single hyperparameter sample for each leave-out-domain and each random seed.
- domainlab.exp_protocol.run_experiment.convert_dict2float(dict_in)[source]¶
- convert scientific notation from 1e5 to 10000 
- domainlab.exp_protocol.run_experiment.load_parameters(file: str, index: int) tuple[source]¶
- Loads a single parameter sample @param file: csv file @param index: index of hyper-parameter 
- domainlab.exp_protocol.run_experiment.run_experiment(config: dict, param_file: str, param_index: int, out_file: str, start_seed=None, misc=None, num_gpus=1)[source]¶
- Runs the experiment several times: - for test_domain in test_domains:
- for seed from startseed to endseed:
- evaluate the algorithm with test_domain, initialization with seed 
 
 - Parameters:
- config – dictionary from the benchmark yaml 
- param_file – path to the csv with the parameter samples 
- param_index – parameter index that should be covered by this task, 
 
 - currently this correspond to the line number in the csv file, or row number in the resulting pandas dataframe :param out_file: path to the output csv :param start_seed: random seed to start for stochastic variations of pytorch :param misc: optional dictionary of additional parameters, if any. - # FIXME: we might want to run the experiment using commandline arguments